17 research outputs found

    Sequential modular position and momentum measurements of a trapped ion mechanical oscillator

    Full text link
    The non-commutativity of position and momentum observables is a hallmark feature of quantum physics. However this incompatibility does not extend to observables which are periodic in these base variables. Such modular-variable observables have been suggested as tools for fault-tolerant quantum computing and enhanced quantum sensing. Here we implement sequential measurements of modular variables in the oscillatory motion of a single trapped ion, using state-dependent displacements and a heralded non-destructive readout. We investigate the commutative nature of modular variable observables by demonstrating no-signaling-in-time between successive measurements, using a variety of input states. In the presence of quantum interference, which we enhance using squeezed input states, measurements of different periodicity show signaling-in-time. The sequential measurements allow us to extract two-time correlators for modular variables, which we use to violate a Leggett-Garg inequality. The experiments involve control and coherence of multi-component superpositions of up to 8 coherent, squeezed or Fock state wave-packets. Signaling-in-time as well as Leggett-Garg inequalities serve as efficient quantum witnesses which we probe here with a mechanical oscillator, a system which has a natural crossover from the quantum to the classical regime.Comment: 6 pages, 3 figures and supplemental informatio

    Time-dependent Hamiltonian estimation for Doppler velocimetry of trapped ions

    Full text link
    The time evolution of a closed quantum system is connected to its Hamiltonian through Schroedinger's equation. The ability to estimate the Hamiltonian is critical to our understanding of quantum systems, and allows optimization of control. Though spectroscopic methods allow time-independent Hamiltonians to be recovered, for time-dependent Hamiltonians this task is more challenging. Here, using a single trapped ion, we experimentally demonstrate a method for estimating a time-dependent Hamiltonian of a single qubit. The method involves measuring the time evolution of the qubit in a fixed basis as a function of a time-independent offset term added to the Hamiltonian. In our system the initially unknown Hamiltonian arises from transporting an ion through a static, near-resonant laser beam. Hamiltonian estimation allows us to estimate the spatial dependence of the laser beam intensity and the ion's velocity as a function of time. This work is of direct value in optimizing transport operations and transport-based gates in scalable trapped ion quantum information processing, while the estimation technique is general enough that it can be applied to other quantum systems, aiding the pursuit of high operational fidelities in quantum control.Comment: 10 pages, 8 figure
    corecore